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Detras de las puertas de Monty Hall: intuicién,
probabilidad y una lectura bayesiana de la paradoja

Gustavo Chijani

Ing. en Alimentos. Profesor responsable de Investigacién Operativa y de Ingenieria
de Procesos, Universidad Nacional de Lujan, Depto. de Tecnologia. Noviembre 2025

Resumen

El llamado problema de Monty Hall se ha convertido en uno de los ejemplos paradigmaticos donde
la intuicion humana entra en conflicto con el razonamiento probabilistico. A partir de un juego
televisivo de la década de 1960, la formulacién matematica del problema muestra que una
estrategia de decision simple —cambiar de puerta cuando el presentador revela informacion
parcial— permite duplicar la probabilidad de éxito. En este trabajo se presenta una exposicion
estructurada del problema de Monty Hall: su origen histdrico, una formulacion rigurosa, la solucion
clasica por enumeracion de casos y un desarrollo detallado de la solucién mediante el teorema de
Bayes. Se analizan ademas variantes del problema que muestran la sensibilidad de las
probabilidades a las hipdtesis sobre el comportamiento del presentador, asi como evidencias
empiricas sobre los sesgos cognitivos involucrados. Finalmente, se discuten analogias con
situaciones reales de toma de decisiones bajo incertidumbre, tipicas de la estadistica aplicada, la
investigacion operativa y la gestion de riesgos.

1. Introducciodn

El problema de Monty Hall puede describirse en pocas lineas:

Un concursante se enfrenta a tres puertas cerradas. Detras de una de ellas hay un premio (por
ejemplo, un automovil) y detrds de las otras dos hay premios no deseados (habitualmente
caricaturizados como cabras). El concursante elige una puerta, pero no se abre todavia. El
presentador, que conoce la ubicacién del premio, abre entonces una de las otras dos puertas,
revelando siempre una cabra. A continuacion, ofrece al concursante la posibilidad de cambiar su
eleccidn inicial y pasar a la puerta restante.

La pregunta es: ¢ le conviene al concursante cambiar de puerta, quedarse con su eleccion original,
0 es indiferente?

La intuicion de muchas personas (incluyendo profesionales con formacién matematica) es que,
una vez abierta una puerta y descartada una cabra, quedan dos puertas y “la probabilidad es 50—
50". Sin embargo, el andlisis formal muestra que, bajo ciertas hipétesis bien definidas, la
probabilidad de ganar el premio si el concursante cambia de puerta es (2/3), mientras que si se
queda con su eleccion original es solo (1/3).

Este aparente conflicto entre intuicion y calculo ha hecho del problema de Monty Hall un clasico
de la divulgacion y de la ensefianza de la probabilidad. Mas alla de la anécdota, el problema
constituye un laboratorio conceptual para discutir probabilidad condicional, actualizacion
bayesiana de creencias y sesgos cognitivos en la toma de decisiones.
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2. Origen historico del problema

El nombre “Monty Hall" proviene del conductor del programa de television estadounidense Let’s
Make a Deal, emitido inicialmente en la década de 1960. En el programa, Monty Hall ofrecia a los
participantes elegir entre distintas puertas o cajas, algunas con premios valiosos y otras con
premios de escaso valor. La mecanica real del programa era mas rica y flexible que la version
académica: a veces se ofrecian canjes intermedios, sumas de dinero, 0 se modificaban las reglas
segun la dinamica del show.

La version matematica del problema surge como una idealizacion del juego, fijando un protocolo
simple y repetible. Bajo esta idealizacion, el problema fue formulado y analizado en la literatura
estadistica en la década de 1970, destacandose las cartas de Steve Selvin en The American
Statistician (1975).

Antes de Monty Hall, ya existian paradojas probabilisticas emparentadas, como el problema de los
tres prisioneros y ciertas variantes de las paradojas de Bertrand, donde la informacion parcial
modifica de manera contraintuitiva las probabilidades condicionales.

La gran difusién popular del problema se produjo en 1990, cuando Marilyn vos Savant, (la persona
con mas |IQ del mundo su IQ es 228 ) columnista de la revista Parade, publicd la respuesta correcta
(recomendando cambiar de puerta) y recibié miles de cartas —incluyendo de académicos— que
cuestionaban su razonamiento. La posterior confirmacion matematica y empirica de su solucion
convirtio a Monty Hall en un caso emblematico de choque entre intuicién y probabilidad.

3. Formulacion rigurosa del problema

Muchas confusiones en torno al problema surgen de no explicitar las hipétesis sobre el
comportamiento del presentador. En esta seccién fijamos el modelo estandar que se adoptara en
el resto del articulo.

Consideremos el siguiente protocolo:

1. Haytres puertas: 1,2y 3.

2. Detras de una de ellas se coloca un premio (auto), y detrds de las otras dos, cabras.
La posicion del premio se determina al azar, con probabilidad uniforme:
P(auto en la puerta i)=1/3  i=1,2,3

3. El concursante elige inicialmente una puerta, sin informacion previa. Denotaremos esta
puerta como la puerta elegida.

4. El presentador (Monty):

o Cconoce exactamente en qué puerta esta el premio;

o siempre abre una puerta que no es la elegida por el concursante;

o siempre revela una cabra (nunca abre la puerta que contiene el auto);

o siempre ofrece al concursante la posibilidad de cambiar a la otra puerta que
queda cerrada.

5. El concursante debe decidir entre:

o permanecer con su eleccion original, o
o cambiar a la puerta restante.
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La pregunta central es: bajo este protocolo, ¢qué estrategia maximiza la probabilidad de ganar el
premio?

En estas condiciones, el problema estd bien definido y puede abordarse con las herramientas
estandar de la probabilidad.

4. Soluciéon elemental: enumeracion de casos

Una primera solucion, accesible incluso sin formalismo bayesiano, consiste en enumerar los casos
posibles. Sin pérdida de generalidad, supongamos que el concursante elige inicialmente la puerta
1. Dado que el premio se coloca al azar, existen tres casos igualmente probables:

1. Elauto estd en la puerta 1.
2. Elauto estd en la puerta 2.
3. Elauto esta en la puerta 3.

El comportamiento de Monty en cada caso es el siguiente:

o Sielauto esta en la puerta 1 (caso 1), Monty puede abrir la 2 0 la 3, ambas con cabra.

» Sielauto esta en la puerta 2 (caso 2), Monty esta obligado a abrir la puerta 3, porque es
la Unica con cabra entre las no elegidas.

« Sielauto esta en la puerta 3 (caso 3), Monty esta obligado a abrir la puerta 2, por el mismo
motivo.

Podemos resumirlo en la tabla:

Caso | Auto | Eleccidn inicial | Puerta que abre Monty | Si permanece | Si cambia
1 1 1 2 0 3 (cabra) Gana Pierde
2 2 1 3 (cabra) Pierde Gana
3 3 1 2 (cabra) Pierde Gana

Dado que los tres casos son equiprobables (cada uno ocurre con probabilidad (1/3)):

o Laestrategia de permanecer gana solo en el caso 1 — probabilidad de ganar = (1/3).
o Laestrategia de cambiar gana en los casos 2y 3 — probabilidad de ganar = (2/3).

Con esto ya se justifica que el concursante deberia cambiar. Sin embargo, el verdadero valor
didactico y conceptual del problema aparece cuando se lo reformula y resuelve explicitamente

mediante el teorema de Bayes, haciendo foco en la actualizacion de probabilidades ante nueva
informacion.

5. Solucidon mediante el teorema de Bayes

5.1. Definicidon de eventos

Supondremos, nuevamente, que el concursante elige inicialmente la puerta 1. Definimos los
eventos:

e (C1): “el auto esta en la puerta 1"
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o (C2): “el auto estd en la puerta 2"
e (C3): “el auto estd en la puerta 3”

Por simetria y aleatoriedad en la colocacion del auto:
P(C1) =P(C2) = P(C3) = 1/3
Definimos ademas el evento:

(Hi) “Monty abre la puerta i y muestra una cabra.

e (H3): “Monty abre la puerta 3 y muestra una cabra”.
El objetivo es calcular las probabilidades a posteriori:
P(C1|H3) y P(C2|H3),

es decir, las probabilidades de que el auto esté en la puerta 1 o 2, dado que Monty abrid la
puerta 3. La comparacion entre estos valores determinara si conviene permanecer o cambiar.

5.2. Probabilidades condicionales del comportamiento de Monty

Bajo el protocolo definido en la Seccion 3, las probabilidades (P(H3 | Ci)) son:

o Sielauto esta en la puerta 1 (C1), Monty debe abrir una de las puertas 2 o 3, ambas con
cabra. Supondremos que elige entre ellas al azar, con probabilidad (1/2) cada una:
P(H3|C1)=1/2

« Sielauto esta en la puerta 2 (C2), Monty no puede abrir la 2 (tiene el auto) nila 1
(elegida por el concursante). Se ve forzado a abrir la puerta 3:
P(H3|C2)=1.

o Sielauto esta en la puerta 3 (C3), Monty no puede abrir la 3, por contener el premio, por

lo que debe abrir la puerta 2:[
P(H3|C3) =0.

5.3. Calculo de la probabilidad del evento observado
Aplicamos la ley de la probabilidad total para el evento (H3):

P(H3) = P(H3 | C1)*P(C1) + P(H3 | C2)*P(C2) + P(H3 | C3)*P(C3).
Sustituyendo los valores:

P(H3) =1/2*1/3 + 1*1/3 + 0*1/3 =1/2

5.4. Actualizacion bayesiana

El teorema de Bayes establece que:
P(Ci | H3) = ( P(H3 | Ci)* P(Ci) ) / P(H3).

Para (C1):
P(C1|H3)==(P(H3|C1)*P(C1))/P(H3) = (1/2*1/3)/1/2 = 1/3
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Para (C2):
P(C2 |H3) == (P(H3| C2)*P(C2) )/ P(H3) = (1*1/3)/1/2 = 2/3

Por lo tanto, condicionado a que Monty abre la puerta 3 y muestra una cabra, la probabilidad
de que el auto esté:

e enlapuertal (la eleccion original) es (1/3),
o enlapuerta 2 (la puerta disponible para el cambio) es (2/3).

Estos valores son las probabilidades posteriores resultantes de la actualizacion bayesiana al
observar la accion de Monty. La conclusion es inmediata: el concursante maximiza su probabilidad
de ganar si cambia de puerta.

6. Variantes del problemay sensibilidad a las hipotesis

El resultado anterior depende criticamente de las hipdtesis sobre el comportamiento del
presentador. Modificar estas hipdtesis conduce a otros problemas, que pueden modelarse también
de manera bayesiana:

« Si Monty no siempre abre una puerta, sino solo a veces, la ausencia de apertura se
convierte en informacion adicional que afecta las probabilidades.

o Si Monty elige al azar una puerta a abrir, sin conocer la ubicacion del premio, la
probabilidad de que al abrir una cabra queden dos puertas “simétricas” puede cambiar el
analisis.

« Si el concursante sospecha que Monty tiene una estrategia sesgada (por ejemplo, abrir
siempre la puerta 3 cuando puede), las probabilidades condicionales (P(H3 | Ci)) cambian,
y con ello la actualizacién bayesiana.

Estas variantes muestran que el problema de Monty Hall puede entenderse como un ejemplo
simple de decisidn bajo informacién asimétrica: el presentador tiene mas informacion que el
concursante, y el concursante debe inferir, a partir del comportamiento observable de Monty, como
actualizar sus creencias.

7. Evidencia empirica y sesgos coghitivos

Diversos estudios en psicologia del razonamiento probabilistico han mostrado que la mayoria de
las personas:

« tiende a considerar que, tras abrirse una puerta con cabra, las dos puertas restantes estan
“en igualdad de condiciones”;

» subestima el rol de la informacidn condicional incorporada por la accion del presentador;

e Mmuestra resistencia a aceptar que “cambiar” es sistematicamente mejor que “quedarse”.

En algunos experimentos, la proporcion de participantes que elige cambiar es muy baja; incluso
después de explicarles la solucion correcta, muchos siguen percibiendo el problema como “50-
50",

Curiosamente, en experimentos con animales (por ejemplo, palomas entrenadas con un esquema
analogo), estos tienden a aprender la estrategia Gptima de cambiar de “puerta” con mayor rapidez
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que los humanos, simplemente por refuerzo repetido. Esto ha sido citado como ejemplo de como
la intuicion humana puede quedar atrapada en representaciones pobres de la estructura
probabilistica, mientras que un mecanismo de aprendizaje puramente empirico “descubre” la
estrategia dptima.

El problema de Monty Hall se ha convertido asi en un caso de estudio en:

e heuristicas y sesgos,
« dificultades con la probabilidad condicional,
« Yyensefianza de estadistica y probabilidad en distintos niveles educativos.

8. Aplicaciones y analogias en toma de decisiones

Aunque el escenario de las “tres puertas y las cabras” es puramente IUdico, la estructura del
problema ofrece analogias con situaciones reales donde se debe decidir si revisar una decision
inicial a la luz de informacion nueva.

Algunos ejemplos conceptuales:

« Diagnéstico médico: ante un test con ciertas tasas de falsos positivos y falsos negativos,
la aparicion de nueva informacion (un segundo estudio, un resultado de laboratorio
adicional) obliga a recalcular las probabilidades posteriores de enfermedad, de modo
analogo a la actualizacion bayesiana que se ve en Monty Hall.

« Gestion de riesgos: en contextos de riesgo operativo o financiero, la aparicion de sefiales
parciales (por ejemplo, indicadores de estrés en un sistema) puede interpretarse como
“puertas abiertas” que obligan a revisar la probabilidad asignada a escenarios de falla.

« Investigacién operativa y analitica de decisiones: la distincion entre un prior
(probabilidad inicial), la informacion observada y el posterior (probabilidad actualizada)
esta en la base de modelos bayesianos de decision, lineas de ensamblado con inspeccion,
sistemas de mantenimiento preventivo, etc.

En todos estos casos, el mensaje central que ilustra Monty Hall es que la informacion nueva rara

vez debe tratarse como un adorno: requiere un recalculo sistematico de las probabilidades
involucradas, y el teorema de Bayes proporciona el marco formal para hacerlo.

9. Conclusiones

El problema de Monty Hall combina tres ingredientes que lo han convertido en un clasico:

1. Una formulacién extremadamente simple, comprensible en segundos.

2. Una respuesta correcta contraintuitiva, que contradice la percepcion espontanea de la
mayoria de las personas.

3. Una estructura matematica rica, que permite discutir probabilidad condicional,
actualizacion bayesiana, informacion asimétrica y Sesgos cognitivos.

En este articulo se ha presentado:
el contexto historico del problema;

 laformulacion rigurosa del modelo estandar;
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 la solucidn clasica por enumeracion de casos;

« undesarrollo explicito basado en el teorema de Bayes;

e variantes que muestran la sensibilidad a las hipétesis sobre el comportamiento del
presentador;

« Yy algunas conexiones con problemas reales de toma de decisiones bajo incertidumbre.

Mas alla de su caracter ludico, Monty Hall constituye una herramienta didactica y conceptual
valiosa en cursos de probabilidad, estadistica, investigacion operativa y analitica de decisiones.
Sirve para enfatizar que la intuicién probabilistica puede ser engafiosa, y que el uso correcto de la
informacion disponible exige un marco formal de razonamiento, del cual el teorema de Bayes es
una pieza central.

Sin embargo, la gran reflexion que ilustra el verdadero valor de lo que nos ensefia la estadistica
es:

¢ Qué pasa si seguimos el juego, cambiamos de puerta como mejor decision y cuando abrimos y
se resuelve el juego EL AUTO ESTA EN PUERTA INICIAL? A la espera de vuestros comentarios.
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El concepto de entropia en simulacion y teoria de la
comunicacion

Alejandro Roberti

Ing. en Alimentos. Profesor consulto del Departamento de Tecnologia
de la Universidad Nacional de Lujan. Ex responsable de las
asignaturas Ingenieria de Procesos, Investigacion Operativa y
Modelos, Simulacién y Teoria de la Decision

En nuestra publicacion Optimiza 3: Modelos, Simulacion y Teoria de la Decision hemos
referenciado el concepto “entropia” en el Capitulo 1, al mencionar “la tendencia al desgaste de
los sistemas”; en el Capitulo 4, al mencionar los requisitos que debe cumplir un generador de
ndmeros aleatorios, donde mencionamos el blanqueamiento de Von Neuman o destilacion de
entropia, como método que ofrece “seguridad de Shanon” y también en el Capitulo 1, destinado
a Teoria de la Informacion, donde hablamos nuevamente de Claude Shannon, aungue no
directamente de entropia, pero si de su teoria matematica de la informacion que tiene uno de sus
pilares en ella.

Debemos sefialar que la entropia es un concepto muy particular que se utiliza en el campo de la
fisica, especificamente en termodindmica, en la parametrizacion de los contenidos de energia de
un sistema, y que tiene la particularidad de que no es una magnitud ni una ley fisica. Lo que la
hace especial, ademas, es que no se cumple estrictamente, ni aun en sus propios ambitos. Esto
se debe a que se trata de un concepto estadistico referido a los comportamientos macroscopicos
de la materia o de la energia en base a los estados microscdpicos (microestados) de ese estado
(macroestado). Esto implica que solo se puedan abordar esos comportamientos en términos
estadisticos.

Si bien el parrafo anterior puede ser un galimatias y aun cuestionable, y pidiendo permiso a los
termodinamicos y a los fisicos, vamos a tratar de explicar algo de lo que concierne a nuestros
temas desde un punto de vista muy simplificado con el objetivo meramente informativo y sin
pretender presentarlo como un tratado sobre la entropia.

Debemos recordar que hemos oido conceptos muy arraigados. como por ejemplo:

“la entropia de los sistemas tiende naturalmente a aumentar a medida que transcurre el
tiempo”

y que solemos recurrir a casos de la naturaleza para demostrar que esto es cierto: por ejemplo,
sabemos que una copa de vidrio (estado cuyos componentes estan ordenados) que se rompe
(estado cuyos componentes estan desordenados) nunca se recompone espontaneamente y
vuelve a ser una copa aunque pase mucho tiempo. Llamamos a esto “proceso irreversible” y es
una de las bases del segundo principio de la termodinamica cuando se aplica a fenomenos que
implican el uso, el aprovechamiento o la simple disipacion de la energia.

Cuando nos hemos referimos a las propiedades de los sistemas y, entre ellas mencionamos a la
entropia con la siguiente definicion:

“Entropia: que es la tendencia de los sistemas a desgastarse, a desintegrarse, relajar los estandares
y aumentar la aleatoriedad. La entropia aumenta con el tiempo. Si aumenta la informacion,
disminuye la entropia, porque es la base de la configuracién y del orden. Obviamente el proceso
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entrdpico, en tanto se trata de un proceso termodindmico, implica que hay un consumo
irreversible de energia e informacion para mantener la integridad del sistema.”

En esta definicion estamos relacionando claramente varios conceptos fundamentales:
informacion, energia, orden, aleatoriedad y tiempo.

Por experiencia sabemos que hay comportamientos de la materia que son irreversibles, es decir
que no tienen una simetria “natural” a menos que se use energia externa. El ejemplo clasico es
el de un recipiente lleno de agua, separada en dos cavidades por una compuerta: el agua de la
izquierda tiene disuelta cierta cantidad de tinta y la derecha esta pura. Asi tenemos agua azul a
la izquierda y clara a la derecha. Si sacamos o abrimos la compuerta, vemos que, al cabo de un
tiempo, el agua se mezcla (el agua con colorante se difunde en todo el recipiente) y tenemos el
recipiente completo con agua coloreada. Por mas que dejemos pasar tiempo, lo contrario no
ocurre: no queda el lado izquierdo con agua azul y el derecho con agua clara o viceversa,
aungque pongamos nuevamente el tabique o aunque esperemos mucho tiempo. (Fig. 1)

=

Fig. 1. A la izquierda un recipiente con agua separado en dos sectores por una compuerta. Uno de ellos
tiene un colorante y el otro no. A la derecha, al abrir la compuerta ambos liguidos se mezclan y el color
se difunde.

Ahora vamos a suponer que en el lado “azul”, con la compuerta puesta en su lugar, solo tenemos
4 moléculas de colorante, y que las tenemos perfectamente identificadas: son las moléculas “A”,
“B”’ “CH y “DH. (Fig. 2)

Acda podemos notar algunas cosas interesantes. La primera es que tenemos toda la informacion
posible sobre el estado del sistema “agua con color” sabemos ddonde estan todas y cada una de
las moléculas del colorante (en el lado izquierdo) y donde NO estan (en el lado derecho).
Ademas sabemos que, en estas condiciones, no hay otra posibilidad.

Fig. 2. Antes de abrir la compuerta el sector coloreado tiene todas las moléculas del colorante. Si

gueremos describir el recipiente tenemos la informacion completa de su estado.
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Ahora vamos a abrir la compuerta y vemos que tenemos cuatro posibles estados:

1) Que las moléculas permanezcan todas a la izquierda

2) Que solamente una de ellas pase a la derecha y las otras tres queden a la izquierda
3) Que lamitad de ellas pasen a un lado y la otra mitad no pase

4) Que tres pasen a la derecha y una permanezca en la izquierda

5) Que las cuatro pasen a la derecha.

i |
o 0 o 0 °
o 0 €]
1. Todas a la izquierda 2. Una 3 la derecha
H
o O
(&) (o]
3. Repartidacs por partes iguales
1 —1
o © 00
00 600
L
4. Una alaizquierda 5. Todas a |a derecha

Fig. 3 Todos los macroestados posibles

Podemos decir que cada uno de estos estados es un “estado no especifico” 0 macroestado.
Tenemos, entonces, cinco macroestados para el caso de un recipiente que originalmente tenia
dos cavidades y cuatro moléculas.

En el primer estado, tenemos informacion completa sobre la situacion de cada molécula. Cada
una de las cuatro esta en el mismo sector. No hay otra posibilidad. Esto puede ocurrir entonces
en un solo y Unico caso (0 microestado) sobre los cinco posibles.

No es asi el segundo caso, una a la derecha y tres a la izquierda, porque aca tendremos estas
posibilidades:

Moléculas en cada lado

Izquierda Derecha
A-B-C D
A-B-D C
A-C-D B
B-C-D A

Como vemos para el macroestado “1 a la derecha, tres a la izquierda” hay cuatro estados
particulares posibles (microestados) y tenemos que admitir que debemos buscar informacion
extra para saber en cual de esos microstados estamos. Hemos perdido informacidn respecto al
caso anterior. También sabemos que cada “microestado” tiene la misma probabilidad.
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Para el tercer caso, “2 a la derecha, 2 a la izquierda”, tenemos seis posibles escenarios:

Moléculas en cada lado
lzquierda Derecha
A-B C-D
A-D C-B
A-C B-D
B-C A-D
B-D A-C
C-D A-B

Como vemos ahora hay seis microestados posibles con la misma probabilidad y tenemos que
averiguar, conseguir informacion, sobre que moléculas estan a la derecha, ya que puede haber
una sola combinacion de seis posibles. Hemos perdido atin mas informacion.

Obviamente si analizamos lo que ocurriria con tres moléculas pasando a la derecha tendriamos
el mismo razonamiento que en caso 2. Y si estuvieran todas a la derecha seria lo mismo que el
punto de partida.

Podriamos hacer un grafico de estados posibles (microestados) para cada uno de los estados
inespecificos. Los microestados posibles estan en el eje de la “y" y los macroestados en el de las
HXH

izquierda | izquierda | izquierda | derecha | derecha

Gréfico 1.

Nos encontramos con que hay 16 microestados posibles y que solo nos encontraremos en el
macroestado “todas a la izquierda” una vez cada 16 estados que se den (1/16) y 1/16 (0,065)
veces que estén “todas a la derecha’. Esos dos serian casos de “maximo orden posible”,
aunque son posibles, tenemos pocas chances de que ocurran.

Los casos con un desorden un poco mayor podran darse con algunas posibilidades mas, porque
van a aparecer 4 veces entre 16 posibles, que es 4/16 = 0,25, pero el caso de maximo desorden
lo vamos a encontrar 6 veces entre 16 posibles (6/16 = 0,375).

Si hacemos la suma de estos nimeros, tenemos

Todos a la izquierda + una a la derecha + dos a la derecha + tres a la derecha. + todos a la derecha

(1/16) + (4/16) + (6/16) + (4/16) + (1/16) = (L + 4 + 6 + 4 + 1)/ 16 = 16/16
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Esta suma nos dice que forzosamente debemos estar en uno de estos 16 casos. Ademas
podemos decir que estamos calculando las probabilidades de encontrarnos en un estado
determinado y que solamente nos encontraremos en uno de ellos porque al ser la suma igual a
uno, las probabilidades son excluyentes.

La pregunta es, ¢ El sistema evoluciona por alguna ley de la naturaleza al maximo desorden? La
respuesta es No. Ocurre algo mucho mas simple: es mas probable encontrar al sistema en un
estado donde existan muchas mas combinaciones de microestados que en cualquier otro que
tenga menos combinaciones. Simplemente, al haber mas microestados en un macroestado, es
mas probable caer en uno que en el que en otro.

Si ademas pensamos que el colorante no tiene cuatro, sino miles de millones de moléculas,
veremos que las probabilidades de encontrar un sistema ordenado son absolutamente
despreciables porque se demuestra que, a medida que aumentamos el nimero de componentes
la distribucion de estados posibles centrada en el caso mas frecuente (Gréfico 1) se hace cada
vez mas estrechal.

70
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cII
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Grafico 2 (izg.) frecuencia de aparicion de sumas con 2 bolas — Grafico 3. (Der.) con 3 bolas

Lo mismo ocurrié con la informacion: a medida que hay posibilidades de encontrar las moléculas
distribuidas en cualquier orden, vamos perdiendo informacion sobre el lugar donde
encontraremos una molécula en particular.

En el caso 1y 5, el sistema tiene el maximo orden posible y solamente tenemos 1 grado de
libertad en 16 opciones para describir exactamente el sistema y saber en qué recinto esta cada
una de las moléculas. Menos ordenado, casos 2 y 4, ahora tenemos cuatro combinaciones
diferentes para cada recinto de posibles situaciones de cada molécula. Totalmente desordenado,
ahora tenemos 6 posibles combinaciones de estados posibles para cada una de las moléculas,
hemos perdido aun mas informacion.

1 Un ejemplo claro que se usa habitualmente es con dados: si se usa un dado la probabilidad de encontrar
cualquier cara es la misma para las 6 caras. Si se usan dos dados, |la probabilidad de encontrar la suma de
caras vemos un minimo de frecuencias para la suma 2 o la suma 12 que solo se pueden conseguir si ambos
dados tienen un as 0 ambos un 6. La maxima frecuencia aparece con la suma 7, que se puede conseguir
con 6 combinaciones de ambos dados: 1-6, 2-5, 3-4, 4-3, 5-2 y 6-1. Es claro que si usamos 1000 dados,
nadie esperaria encontrar el nimero 1000 o el 6000, ya que eso solo se podria lograr si los 1000 dados
cayeran simultdneamente en 1 o en 6, aunque la probabilidad existe, en términos practicos es casi cero.
[(1/6) elevado a la 1000]. Si en vez de dados sumamos los nimeros de dos bolas numeradas del 0 al 9,
tendremos una distribucién como la del grafico 2. Y de tres bolas también del 0 al 9, como la del grafico 3.
Ahi comprobamos como se estrecha la curva de frecuencias.
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La PRIMERA CONCLUSION de estas lineas es que la entropia no es una propiedad intrinseca
de la materia o de la fisica o de la termodindmica o de la informacion. Es un principio
estadistico.2

La SEGUNDA CONCLUSION es que podemos definir la entropia exclusivamente como un
fendmeno estadistico si usamos la expresion siguiente:

S=kinX,

Siendo S entropia, k la constante de Boltzman, y X la cantidad de microestados posibles
equiprobables. Debemos prestar atencion a este término: equiprobables. Por ejemplo una
molécula a la derecha/tres a la izquierda es un estado valido si la probabilidad de que la
molécula sea la “A” es la misma que la probabilidad de que sea la “B”, 1a “C" o la “D".

Por ejemplo, si tenemos que calcular la entropia de una moneda (bit), que tiene solo dos
estados, cara 0 ceca, nos quedaria, S = k In 2. Podemos asimilar X a la informacion disponible.

De nuevo, en la moneda, esa informacion es cara (0) y ceca (1). En el caso de nuestras 4

moléculas tendremos S = k In 24, lo que da que S es proporcional a 16... ya que 2 es el nimero
de estados posibles (derecha o izquierda) y 4 es el nimero de componentes totales.

La TERCERA CONCLUSION es que la entropia esté relacionada con la pérdida de informacion.
A medida que aumenta la entropia, hemos visto, aumenta la pérdida de informacién. Aumenta la
incertidumbre. Aumenta la aleatoriedad.

Basado en estos conceptos (que aca hemos simplificado al maximo posible) es que se trabaja en
base a entropia de sistemas para disefiar generadores pseudoaleatorios criptograficamente
Sequros.

El concepto es obtener secuencias de bits mediante un generador binario que soporte la llamada
“prueba del siguiente bit": Dados los primeros k bits de una secuencia aleatoria, no deberia haber
ningun algoritmo que pueda predecir el bit k+1 con una probabilidad de éxito superior a

0,5.

Veamos esto en términos de entropia. Como se trata de bits binarios, podemos usar
S=klog: X.

Si graficamos en las x la probabilidad de cada uno de los estados posibles de ocurrencia de un
bit aleatorio (0 0 1, o cara y ceca) y en ordenadas la medida de entropia, llamando 1 a la
entropia de la maxima probabilidad de ocurrencia del bit, tenemos que para una probabilidad de
0,5 habra una entropia maxima de 1. (logz 2 = 1)

2 A pesar de esta afirmacién debemos recordar que las interacciones entre las particulas reales existen y
contribuyen a que aumente la entropia termodinamica. Este ejemplo es simplificador.
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S(x)

0 0,5 1 P(X)
Fig. 4 — Maxima entropia de 1 bit

von Neumann prob6 que un algoritmo simple puede eliminar cualquier sesgo de un flujo de bits
(a este proceso se lo conoce como destilacion de entropia o blanqueamiento) si se aplica en
conjunto con un procedimiento de generacion de una serie aleatoria.

Veamos como ejemplo una secuencia de 1 bit, (digamos que genera una secuencia en que cada
bit es k.) Le agregamos como parte de la destilacion un bit “de blanqueo” que genera la
secuencia k+1, vamos a obtener dos bits con cuatro posibles combinaciones: 00 — 01 — 10 - 11.
El blanqueamiento de von Neuman nos entregaria al final un solo bit proveniente de desechar de
estos cuatro los casos 00 y 11 porque presupone que en ellos el segundo bit fue “anunciado” por
el primero y nos dejaria solamente con las combinaciones 01 y 10, los que se presentarian,
como dijimos, como un solo bit: para 01 obtendriamos 0y para 10 un 1.

Hemos obtenido un bit de entropia méxima usando un bit para blanquearlo.

Bitk | Bitk+1l | Bitde salida
0 0 —
0 1 0
1 0 1
1 1 —

Si la entropia es funcion de la probabilidad de que X sea igual a 1, cuando la probabilidad P(X=1)
sea 0,5 entonces todos los resultados posibles son equiprobables. Maxima entropia, maxima
impredecibilidad. Es la prueba de la moneda. Si un proceso tiene la misma impredecibilidad que
tirar una moneda, entonces es verdaderamente aleatorio.

De esta manera, la mencién que hemos hecho a la teoria de comunicacion en el capitulo 1,
cuando la describimos como una aplicacion de la TGS, encierra un grado de complejidad ya que
la propuesta de Claude Shannon tiene como punto principal la entropia. En este caso se trata de
una magnitud fisica (informacion) que es una secuencia de caracteres cuyo nivel de informacion
se puede medir con la entropia y el mensaje en términos de cadena cuya informacion se mide
con una secuencia de bits.

El principio es el siguiente: supongamos el caso de un mensaje. La probabilidad de acceder al
contenido de cada mensaje no es igual para todos los mensajes. Sabiendo esto el emisor va a
“gastar” mas bits en codificar los mensajes menos probables y menos en los mas probables. Por
ejemplo si el mensaje es “hay que medir 10 centimetros”, es muy probable que si se emite
solamente “medir 10 c¢” el receptor “entienda” (no pierda informacion) que la ¢ se refiere a
“centimetros” y no note la ausencia de “hay que” ya que aporta mucho menos informacion que
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el resto. Dicho de otra manera no parece que sea necesario mandar el mensaje completo. El
contexto referido a medida (en infinitivo) y la unidad que comienza con ¢ son suficientes. Por el
contrario, si el mensaje original fuera “hay que adquirir 10 computadoras” y nos limitamos a
mandar el mensaje “adquirir 10 ¢” seguramente necesitamos mas informacion, porque si bien
es cierto que hay que sigue siendo de baja importancia, en este contexto el caracter “¢” perdid
informacion porque puede ser interpretado como “computadora’, “carcaza’, “conector”, “cable”,
etc. Debemos aumentar la longitud del mensaje porque la informacion alta que habia en el
caracter “c” del primer mensaje se perdio en el segundo caso.

Por esto se usa para todos los mensajes emitidos por una fuente un promedio ponderado de la
longitud del cddigo que se calcula en funcion de las probabilidades de ocurrencia de dicha
longitud. Este promedio es la entropia de la fuente y sirve para cosas tan cotidianas como, por
ejemplo, comprimir un archivo para enviarlo por correo electronico. Se demuestra que la entropia
de una fuente depende de la probabilidad de cada caracter emitido. (por ejemplo, en espafiol, la
“a” es mas frecuente que la “w” en cualquier conjunto, por tanto “w” transmite mas informacion
que “a").

En contexto de un mensaje, no cambia mucho la informacion si se transmite “iremos al cine”
como “iremos cine”. En este caso, la particula omitida (“al”) posee muy poca informacion. En
cambio si hemos transmitido solamente “iremos al” hemos perdido mucha informacion al omitir
la particula “cine”

Es comun que para medir la informacion se ejemplifique con la cantidad de mensajes que serian
necesarios para responder la supuesta pregunta que origind estos mensajes. Muchas veces la
respuesta es binaria (SI — NO) y con 1 solo bit alcanza para responder una pregunta simple
(¢.estas en viaje?). Pero no asi para otras preguntas (¢, En qué fecha te queda bien reunirnos en
Rosario?) Esta definicion llevd a Shannon a imaginar que, sin importar lo compleja que sea la
pregunta, la misma pregunta se podia desglosar en una cantidad de preguntas simples que nos
llevaria a la respuesta.

Veamos un ejemplo: Queremos saber quién produjo un informe de entre los miembros de un
equipo formado por dos hombres y dos mujeres, cuyos nombres son Juan, Pedro, Ana y Belén.
Como la pregunta ¢ Quién escribid el informe? No nos sirve porque no hay respuestas por Sl o
por NO, vamos a averiguarlo mediante preguntas de respuestas binaria:

1) El que escribio el informe, es hombre?, La respuesta por Sl o por NO elimina al 50% de
los candidatos.
2) La segunda pregunta, en funcién de la respuesta a la primera seria: Su nombre comienza

con J? (si era hombre) Su nombre comienza con A? (si era mujer). Con esta segunda respuesta
tenemos el nombre preciso. Hemos necesitado solamente 2 bits para reconstruir un mensaje con
4 posibles respuestas.

De esta manera vemos que dividiendo la cantidad de opciones en grupos con algun criterio
podemos elegir cualquier cantidad de opciones y dividirlas sucesivamente por la mitad hasta
llegar a una Unica alternativa. Para saber cuantas veces vamos a dividir una cantidad por 2 para
llegar a la unidad usamos nuevamente el logaritmo en base 2 del nimero de preguntas.

H = log, x
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En este caso el log. de 4 es 2. Si el caso fuera saber mi PIN de acceso a Window, que es un
ndmero de 5 digitos, tendria que responder logz de 100.000 = 16,6 preguntas o 16 bits para
acceder al nimero correcto. Quiza en este punto se entiende un poco mejor la destilacién de
entropia de von Neumann que mencionamos un poco mas arriba.

Sin embargo este ejemplo supone que la mitad es masculina y la mitad es femenina. Pero, no
siempre esto es posible, por ejemplo, ¢ Qué ocurre si sabemos de antemano que solo puede
haber un hombre y dos mujeres?

Digamos que son Juan, Ana, Belén y Beatriz. Ahora necesitariamos hacer estas preguntas, que
se responden por Sl o por NO:

1) Es Mujer? (si la respuesta es NO ya conocemos el mensaje y hemos usado un solo bit)

2) Silarespuesta es Sl: ¢,su nombre comienza con “B"? (si la respuesta es NO ya sabemos
que es Ana y hemos gastado 2 bits)

3) Silarespuesta es Sl: ¢ Su nombre finaliza con “z"? y obtenemos la respuesta gastando 3
bits

Hemos necesitado 1 bit en un camino, 2 en el segundo y 3 en el tercero.

En estos casos la primera respuesta condiciona la(s) siguiente(s) pregunta(s) y cambia el estado
en antes de la pregunta y después.

Si en lugar de usar el logz de la cantidad x de estados, ahora probamos con la expresion

opciones antes de contestar

H =log, - —
opciones remanentes después de contestar

Tendremos para el primer ejemplo, (cuando habia 2 hombres y 2 mujeres): Sl (es hombre)
H= long =1
2
Segunda pregunta, tanto como si la primera respuesta fue SI como si fue NO)
H= logzz =1
1

Como vemos, el nimero de bits es igual al que encontramos anteriormente con el otro método.

En el segundo ejemplo (un solo hombre) las preguntas no dividen por la mitad. La primera es
para el saber si es hombre o no:

H = log,3 = 0,41 para “no”

Quiere decir que ahora esta pregunta tiene menos informacion que antes, ya que “vale” 0,4 bits
(0 sea, esta sola vale casi como media pregunta de las de antes 0 como dos preguntas si fue
contestada como si), para saber, con una sola que se trata de un hombre. Asi que resulta
practico ordenar las preguntas segun la importancia que tienen en el mensaje. Sabemos que 1
de cada cuatro personas es Hombre, pero que 3 de cada 4 es mujer. Tendremos 2 opciones
antes de preguntar y solo 1 después de hacerlo.

3
H = logzz = 0,58
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Que significa que esta respuesta también tiene poca informacion (excepto que la respuesta sea
Sl), ya que seguimos dudando entre personas restantes, lo que nos lleva a hacer una tercera
pregunta, que, al ser la Ultima, siempre valdra un bit;

2
H=log21=1

Fuimos pasando de 4 personasa 3,de3a2yde2al.

Esta forma de ver el problema se relaciona con la probabilidad de que sea un hombre (1/4) o que
sea una mujer (3/4) y aun en ese caso que su nombre comience con “B” (2/3) o con “A”. Por este
motivo, como los numeros son los mismos pero inversos, la expresion de Shannon también la
podemos escribir asi pensando en hacer una media ponderada de respuesta que necesito segun
las preguntas:

H=1 !
= [0 —_
gzp

¢ COmo se expresa esto como informacion? Si supiéramos la respuesta (p = 1) no necesitamos
informacion. Si tenemos un 50% de probabilidad de saber la respuesta, (p = 0,5) tenemos 1 bit
de informacion, y si, en cambio, la probabilidad de conocer la respuesta tiende a cero, mas bits
de informacion necesitamos y obtenemos de ella.

Finalmente, como estamos usando probabilidades que pueden ser diferentes en cada uno de los
pasos, lo que haremos es usar una media ponderada para calcular la cantidad final de entropia

del mensaje:
EORLAC)
= Lo —_
i pitog» D;

En el ejemplo de 1 hombre y 3 mujeres, tenemos una probabilidad de 0,25 para hombre y de
0,75 para muijer, por lo tanto, necesitaremos 0,8 bits promedio ponderado para llegar a la

respuesta.

En la Figura 5 comprobamos que para llegar a Juan necesitamos 1 bit, para Ana 2 bits y para el
resto (Beatriz o Belén), 3 bits.

Fig. 5 — Entropia condicionada por la respuesta

La probabilidad de que sea Juan es de Y4, podemos escribir
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1 1
Juan = pylog, (E) = 0,25 X log, (0’25) =0,5

Nos queda un remanente de 3 personas. El factor ponderado de que sea Ana sera

1
) = 0,53

1
= p,l ( ) = 0,333 x1 (

2
Ahora solo nos quedan 2 personas, cada una de ellas tiene la misma probabilidad y su factor de
ponderacion sera

1 1
Belen/Beatriz = pslog, (—) = 0,5 X log, (—) = 0,5
D3 0,5
Entonces, la cantidad media de bits necesarios serd
1 1 1
I = p,log, (—) + p,log, (—) + pslog, (—) =05+0534+05=1,53
b1 b2 b3
Que significa que llegamos a la pregunta final con menos de 2 bits.

Obviamente, este es un ejemplo pueril, aunque sigue siendo valido es situaciones mas
complejas.

Referencias:

John von Neumann, 1963, “Various techniques for use in connection with random digits” . The
Collected Works of John von Neumann. Pergamon Press, pp. 768-770 ISBN 0- 8-009566-6

McKay, David, 2003. “Information Theory, Inference and Learning Algorithms”, Cambridge
University Press.
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Cadenas de Markov: el lenguaje probabilistico oculto
detras de muchos procesos.

Introduccion

Mas de cien afios después de que Andrei Markov formulara su idea sobre “el futuro que depende
solo del presente”, sus modelos siguen escondidos detrds de muchas herramientas modernas de
optimizacion, gestion de riesgos e inteligencia artificial. En este articulo proponemos una mirada
conceptual y aplicada a los modelos markovianos, pensados como un lenguaje natural para
describir procesos bajo incertidumbre en donde en un principio desconocemos la probabilidad de
ocurrencia de los eventos

1. Por qué hablar hoy de modelos markovianos

En un cajero automatico, en una linea de produccion, en un call center o en la evolucion de la
cartera de créditos, hay algo en comun: los sistemas cambian de estado con el tiempo y lo hacen
con un fuerte componente de incertidumbre.

En la practica, solemos preocuparnos por preguntas como:

o ¢ Cuanto tiempo va a esperar un cliente?

« ¢ Con qué frecuencia se detiene una maquina?

e ¢Cudl es la probabilidad de que un cliente entre en mora?

e ¢ Qué fraccion del tiempo mi proceso esta “sano” y qué fraccion esta “en problema™?
Los modelos markovianos ofrecen un marco matematico preciso, pero sorprendentemente
intuitivo para abordar estas preguntas. Nos permiten representar el sistema como un conjunto de
estados y un patron de transiciones probabilisticas entre ellos, y a partir de ahi analizar
comportamientos de corto y largo plazo, comparar politicas y tomar decisiones de optimizacion.

2. Un poco de historia: de Markov a la optimizacion moderna

El punto de partida esta en la obra de Andrei Andreevich Markov (1856-1922), matematico ruso
que, a comienzos del siglo XX, se propuso estudiar secuencias de variables aleatorias que no son
independientes, pero en las que el futuro inmediato solo depende del estado presente.

Markov introdujo lo que hoy llamamos cadenas de Markov analizando, entre otros problemas, la
sucesion de letras en textos literarios. La idea central puede resumirse asi:

Para predecir el proximo estado, alcanza con saber donde estoy ahora. No necesito toda la
historia.

Décadas mas tarde, Andrei Kolmogorov aportd los fundamentos formales de la probabilidad
moderna y los procesos estocasticos, dando un marco riguroso a los procesos con propiedad
de Markov, tanto en tiempo discreto como en tiempo continuo.

A partir de alli, los modelos markovianos se integraron a varios campos que hoy son familiares
para los lectores de PULSO OPTIMIZA:
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» Teoria de colas y dimensionamiento de recursos.

 Investigacion de operaciones y programacion dinamica.

« Fiabilidad y mantenimiento de sistemas complejos.

 Ingenieria financiera y gestion de riesgos.

e Y, mas recientemente, machine learning e inteligencia artificial, a través de procesos

de decision de Markov y cadenas de Markov ocultas.

Lo interesante es que muchas de las herramientas modernas que hablamos con naturalidad
(simuladores, algoritmos de control, modelos de scoring, métodos de aprendizaje por refuerzo)
tienen, en su corazon, una estructura marcadamente markoviana.

3. El diccionario basico markoviano

Para poder trabajar con estos modelos con comodidad, conviene fijar algunos conceptos clave.
3.1 Proceso estocastico

Un proceso estocastico es una familia de variables aleatorias que describen cdmo evoluciona en

el tiempo una cierta magnitud de interés. Ejemplo clasico: el nimero de clientes en un sistema de
colas minuto a minuto.

3.2 Espacio de estados

El espacio de estados es el conjunto de situaciones posibles del sistema. No estamos modelando
cada detalle microscapico, sino las categorias que realmente importan para decidir.

Algunos ejemplos:
e Colaenuncajero:0,1,2,3, ... clientes en el sistema.
» Estado de una maquina: operativa, degradada, en falla, en reparacion.
» Estado de un cliente: normal, atrasado, en mora, castigado.

La eleccion de estados es ya una decision de modelizacion: demasiados detalles vuelven el
modelo inmanejable; muy pocos, lo vuelven irrelevante.

3.3 Propiedad de Markov
Un proceso tiene propiedad de Markov si, en términos formales,
P(Xns1 = J 1 Xp =0, Xn_1, .., Xo) = P(Xpyq = | X, = 0)
Es decir, la probabilidad del proximo estado depende solo del estado actual, no del recorrido
completo que llevd hasta él.
Intuitivamente: “el pasado se resume en el presente”.

3.4 Cadenas de Markov en tiempo discreto

Cuando el tiempo avanza en pasos (t=0, 1, 2, ...) y en cada paso el sistema puede cambiar de
estado, hablamos de una cadena de Markov en tiempo discreto.
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La informacidon esencial se concentra en la matriz de transicion P, donde cada elemento
p;jindica la probabilidad de pasar del estado ial estado jen un paso de tiempo:

P =[pijlpij =PXpns1 =Jj 1 X =10)
Cada fila de la matriz suma 1, porque desde un estado dado el sistema necesariamente pasara a
alguno de los estados (incluido eventualmente el mismo).

3.5 Estados transientes y recurrentes
Dentro de una cadena de Markov, algunos estados son “de paso” y otros son “de residencia”.

e Un estado es recurrente si, una vez visitado, la probabilidad de volver a €l en algin
momento futuro es 1.
o Es transiente si hay una probabilidad positiva de que, una vez que lo dejamos, no
volvamos nunca.
Esta clasificacion es fundamental para saber si ciertos escenarios son excepcionales o forman
parte estructural del funcionamiento del sistema.

3.6 Distribucion estacionaria

Bajo condiciones razonables (cadena irreducible, aperiddica), las potencias sucesivas de la matriz
de transicion convergen y la distribucion de estados se acerca a una distribucién estacionaria
7, que cumple:

T =P
Esta distribucion describe, en el largo plazo, qué fraccidon del tiempo pasara el sistema en cada
estado.

Desde el punto de vista de la optimizacion, esto es oro: nos permite cuantificar, por ejemplo:

« Porcentaje de tiempo con cola larga.
« Porcentaje de tiempo con maquina parada.
« Probabilidad de encontrar a un cliente tipico en estado de mora.

3.7 Procesos markovianos en tiempo continuo

Cuando las transiciones no ocurren en pasos discretos, sino en un tiempo continuo (fallas,
reparaciones, llegadas de clientes, etc.), hablamos de procesos de Markov en tiempo continuo.
(a veces conocidos como procesos de nacimiento-muerte)

En lugar de una matriz de probabilidades por periodo, trabajamos con una matriz de tasas de
transicion @, donde cada elemento g;; refleja la “velocidad” a la que el sistema pasa del estado
i alestadoj.

Estos modelos son centrales en fiabilidad, mantenimiento e ingenieria de sistemas.

pulso 24



4. De la realidad al modelo: como se construye una cadena de
Markov util

Desde la perspectiva de optimizacion de procesos, la pregunta practica es: ¢Cémo paso de un
sistema real, con sus datos y complejidades, a un modelo markoviano que me ayude a decidir?

Un camino tipico es:

1. Definir los estados relevantes Se identifican las situaciones que realmente afectan el
desempefio o la decision. Ejemplo: para una linea de envasado puede bastar con tres
estados: operativa, en ajuste y detenida por falla.

2. Elegir el tipo de tiempo

o ¢ Tiene sentido un modelo en tiempo discreto (por turno, por dia, por mes)?
o ¢0 las transiciones ocurren naturalmente en tiempo continuo (fallas, llegadas,
reparaciones)?

3. Estimar probabilidades o tasas de transicion A partir de datos historicos, registros de
mantenimiento, tiempos de atencidn, etc., se construyen:

o Probabilidades de pasar de un estado a otro en un periodo, 0
o Tasas de transicion por unidad de tiempo.

4. Construir la matriz de transicién (o de tasas) Esta matriz sintetiza el comportamiento

dindmico del sistema. Una vez obtenida:
o Se pueden simular escenarios.
o Se calculan probabilidades a corto plazo.
o Se estudia el comportamiento estacionario.

5. Derivar indicadores de gestién A partir del modelo se obtienen métricas como:

o Probabilidad de cola mayor que cierto umbral.
o Porcentaje de tiempo con maquina parada.
o Tiempo esperado hasta la falla.
o Probabilidad de que un cliente llegue a estado “castigado”.

6. Evaluar alternativas de decisién Modificando parametros (cantidad de recursos,
politicas de mantenimiento, reglas de crédito, etc.) se compara el impacto sobre estos
indicadores y se elige la alternativa que optimiza el desempefio.

5. Relevancia actual: ;donde los modelos markovianos encuentran
su lugar de trabajo?

5.1 Industria 4.0 y monitoreo de procesos

En entornos conectados, con sensores y sistemas de supervision en tiempo real, es natural
describir el estado de una planta, de una linea o de un recurso mediante un nimero acotado de
estados (normal, alerta, critico, fuera de servicio). Las transiciones entre estos estados,
alimentadas por datos, encajan perfectamente en marcos markovianos.

5.2 Gestion de riesgos y finanzas
La evolucion de un cliente en una cartera de créditos (al dia, atrasado, en mora) o la transicion de
un activo entre distintas calificaciones de riesgo puede modelarse con cadenas de Markov. Estas

sirven para proyectar la calidad futura de la cartera y alimentar decisiones de provisiones, limites
y estrategias de cobranza.
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5.3 Fiabilidad y mantenimiento

Equipos complejos se modelan como sistemas que saltan entre estados de operacion,
degradacion, falla y reparacion. Con un modelo markoviano se pueden disefiar politicas de
mantenimiento preventivo o predictivo, evaluar contratos de servicio y cuantificar el costo esperado
de paradas.

5.4 Sistemas de colas y servicios

Call centers, cajeros automaticos, centros de salud, sistemas logisticos urbanos... en todos ellos
el nimero de clientes en sistema y los tiempos de espera pueden tratarse mediante modelos de
colas de naturaleza markoviana. Esto permite dimensionar recursos para alcanzar niveles de
servicio deseados con costos razonables.

5.5 Inteligencia artificial y aprendizaje por refuerzo
En procesos de decision de Markov (MDP) se combinan:

o Estados (la situacion actual del sistema).

« Acciones (las decisiones posibles en cada estado).

« Recompensas (beneficios o costos asociados a cada transicion).
Los MDP son la base tedrica de muchos algoritmos de aprendizaje por refuerzo, donde un agente
“aprende” politicas optimas a partir de la experiencia. Asi, los modelos markovianos conectan
directamente la tradicion de la investigacion de operaciones con la IA contemporanea.

6. Algunas aplicaciones ilustrativas

6.1 Cola en un cajero automatico

o Estados: 0,1, 2, ... personas en el sistema.

« Interés: probabilidad de que la cola supere cierta longitud, tiempo medio de espera,
impacto de agregar un segundo cajero.

e Conun modelo de colas markoviano (por ejemplo, un M/M/1 o0 M/M/c) se pueden comparar
configuraciones sin necesidad de experimentar “en vivo” con los clientes.

6.2 Linea de produccion con paradas

« Estados: operativa, parada por falla, en reparacion, en mantenimiento preventivo.

« Interés: porcentaje de tiempo disponible, frecuencia de paradas, costo esperado de
indisponibilidad.

e Un modelo markoviano permite evaluar como cambia la disponibilidad si alteramos la
estrategia de mantenimiento o la calidad de los repuestos.

6.3 Inventarios y quiebres de stock

« Estados: stock alto, medio, bajo, quiebre.

 Interés: probabilidad de quiebre de stock, tiempo medio entre quiebres, costo combinado
de inventario y falta.

e Con una cadena de Markov ajustada a la demanda y reposicion, es posible disefiar
politicas de pedido mas robustas.
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6.4 Evolucion de una cartera de créditos

Estados: al dia, 30 dias de atraso, 60 dias de atraso, castigado.

Interés: probabilidad de default, distribucion esperada de la cartera en el futuro, impacto
de distintas politicas de seguimiento.

La matriz de transicion, estimada con datos historicos, se convierte en una herramienta
de proyeccion y gestion de riesgo.

7. Mirando hacia adelante: ensenanzas de los modelos
markovianos

Mas alla de su contenido técnico, los modelos markovianos dejan varias ensefianzas valiosas para
quienes trabajan en optimizacion y gestion:

1.

Pensar en estados y transiciones Obligan a abstraer la realidad en términos de
situaciones clave y cambios entre ellas. Esa forma de pensar simplifica la complejidad sin
caer en modelos ingenuos.

Aceptar el azar, pero estructurarlo La incertidumbre deja de ser “ruido incomprensible”
y se convierte en un conjunto de probabilidades explicitas, que se pueden medir, discutir
y mejorar.

Equilibrar corto y largo plazo La distincion entre dinamica transitoria y comportamiento
estacionario ayuda a evitar decisiones que sélo alivian el presente a costa de degradar el
futuro del sistema.

Aprovechar los datos de manera inteligente En un entorno con cada vez mas
informacion (sensores, registros, logs), los modelos markovianos son una forma natural
de convertir datos histdricos en modelos dinamicos Uutiles para decidir.

Tender puentes entre disciplinas Desde la teoria de colas hasta la inteligencia artificial,
pasando por mantenimiento y finanzas, los modelos markovianos funcionan como un
lenguaje comun que conecta areas tradicionalmente separadas.

8. Conclusion

Los modelos markovianos nacieron como una curiosidad matematica a principios del siglo XX y
hoy constituyen una herramienta silenciosa pero central en la optimizacién de procesos, la gestion
de riesgos y el disefio de sistemas inteligentes.

Para quienes trabajan en mejora continua y toma de decisiones, aprender a mirar sus sistemas
como cadenas de estados y transiciones probabilisticas no es solamente un ejercicio tedrico:
es una forma poderosa de ganar claridad en entornos complejos y de fundamentar decisiones que,
inevitablemente, se toman bajo incertidumbre.
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Desarrollo de aplicaciones destinadas a los
estudiantes de las asignaturas en reemplazo de
software obsoleto

El presente articulo esta basado en el Proyecto de Desarrollo de la Asignatura presentado en el
Departamento de Tecnologia (UNLu) con la meta de reemplazar todas las funciones del viejo
programa WinQSB utilizado anteriormente y que esta en estado de obsolescencia técnica. Para
mayor practicidad se decidio implementarlo en la modalidad de plantillas con macros de MS 365
Excel

Objetivo

Como se trata de un proceso dinamico y de desarrollo constante sirve para profundizar los
conocimientos disciplinares de los integrantes del equipo de docentes y a la vez para generar
herramientas de formacion tanto para futuros docentes investigadores como para estudiantes de
grado.

Paralelamente permite cubrir la falta de software especializado en este tipo de problemas mediante
el desarrollo de una aplicacion simple. Es esperable que, subsidiariamente, se logre un mayor
acercamiento de los estudiantes al empleo de herramientas informaticas de uso extendido, entre
ellas, las hojas de célculo y la programacion.

Fundamentos:

El equipo docente a cargo de las disciplinas ha detectado, con el paso de los afios, la desaparicion,
por obsolescencia tecnoldgica, de la disponibilidad de software capaz de brindar soluciones
rapidas tanto al estudiante como al profesional que antes era cubierto perfectamente por software
avanzado de alto costo (por ejemplo LINDO/LINGO) orientado solo a aspectos restringidos
(programacion lineal, transporte, etc.) o por software de aplicacion mas amplia, que hace varias
décadas que fue discontinuado y con alto grado de obsolescencia pero que abarcaba la mayor
parte de los temas (WinQSB).

Sin embargo, en algunos temas, como el de la toma de decision en ambientes concretos como los
que en este articulo se ejemplifican, directamente no existen herramientas informaticas de
aplicacion especifica.

Desde hace tiempo, en las asignaturas, se viene trabajando con los estudiantes en la propuesta
de creacion de algoritmos y soluciones informaticas capaces de resolver los casos vacantes.

La utilizacion de hojas de calculo que se propone a los estudiantes durante el desarrollo de la
actividad docente muestra, afio a afio, una curiosa resistencia inicial a su empleo por parte de ellos
que, a poco se va transmutando en entusiasmo por usarla, lo que — por otra parte — es fomentado
por el equipo docente.

De alli surgi6 la idea de comenzar a proponer el uso de estas planillas en casos en que el software
existente no da respuestas o da respuestas muy pobres, tales como planificacion de inventarios,
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rentabilidad esperada en condiciones de incertidumbre o planificacion de produccion en
condiciones de incertidumbre, como es el caso de ejemplo que sigue.

Meétodo de trabajo.

Partiendo de un caso hipotético (un producto perecedero) desarrollamos el modelo
algebraicamente y lo comparamos y testeamos con un modelo matricial generado en hoja de
calculo, que, de superar la prueba, serd usada como herramientas de practica para el estudiante
y los profesionales.

El modelo construido proviene de optimizar la decision aplicando el criterio de Savage en la Teoria
de Toma de Decisiones bajo condiciones de riesgo o de incertidumbre, conocido como
“criterio del minimo arrepentimiento” o0 “minimo lamento”. Se considera que éste es uno de los
criterios que en un escenario incierto puede generar una decision dptima generalmente aceptada
como la mas eficiente.

Desarrollo

Se buscara determinar el lote dptimo de produccion de un producto perecedero, bajo condiciones
de incertidumbre. Esa condicion se aplica a la variable aleatoria DEMANDA, suponiendo
desconocimiento de la naturaleza de la misma ni posibilidades de establecer esa naturaleza en
forma subjetiva.

Se trata de un producto perecedero que tiene un lapso de vida Util, a partir del cual se considera
cualitativamente no apto. Para desarrollar el modelo se dispone de la siguiente informacion
deterministica:

v: Precio de venta unitario del producto [$/un]
c: Costo total unitario del producto [$/un]
vi: Valor residual unitario del producto [$/un], referido a las unidades sobrantes
cs: Costo de escasez de las unidades faltantes en [$/un].
Definiciones:
X: Demanda del producto. Son los valores discretos, X;, que puede tomar esa demanda
Donde X;=0; X; € Z
Los valores de demanda del mercado, X;, pertenecen al intervalo [d,D],
siendo d: la demanda minima del producto y
D: la demanda méxima del producto
Ademas
V>C>V
V>C>Cs
P. Produccion en unidades
B. Beneficioen $

Con las anteriores descripciones, se construye una herramienta algebraica que permita resolver
el problema planteado, mediante la utilizacion del criterio MINIMAX de Savage

Q = min; (max; (Arri))
aplicable a lanzamientos de nuevos productos, para los cuales no se tiene informacion estadistica
previa, ni una correlacion satisfactoria con vinculacion a otro producto similar en el mercado.
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La produccion, en unidades, P, no tiene restricciones para cubrir cualquier valor establecido de la
demanda X. Buscamos un resultado operativo, que sera el calculo del Beneficio (B) y para lograrlo
estableceremos dos casos.

Caso en que demanda es menor que lo que se produce
X < P, donde resulta que B=vX—cCP+v (P—X)

que puede expresarse como
X<P => B:(V—Vr)x+(Vr—C) P

Caso en que la demanda supera lo que se produce

X = P, donde resulta que B=vP—cP-¢c(X—P)
X2P=2B=(v+cs—C)P—cCsX

Puede definirse como “mejor acto”, cuando X = P
B=(v—c)X=(v—cC)P

Esta definicion se hace necesaria para la construccion de la funcion de ARREPENTIMIENTO tal
como la definiera Savage.

Desarrollando los dos casos, se encuentra:

Primer caso

Considerando una produccion P cualquiera sea y una demanda Xy, tal que X1 < P, y graficando
B = f(X/P), resulta

B

Arr 1

X / P unidades
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La recta (1), representa la recta de los mejores actos, donde se cumple la condicién X = P, es
decir, se produjo Py resulté una demanda X tal que X = P, o, dicho de otra manera, la demanda
en justamente lo producido.

La recta (2) representa la situacion en donde habiendo producido P se da una demanda menor,
Xital que X1 < P, donde
B=(v—Vv)X+(w—cC)P Ecuacion 1

en este caso, el punto 1 representa el Beneficio de que, habiendo producido P, se da la demanda
X1(X1<P),y el punto 2, representa el punto maximo que se hubiera dado si P->X1y se cumple
que

X1=P.

De acuerdo con Savage, se define la funcién de arrepentimiento como
Arr = max (bj— by)

Es decir, el maximo beneficio posible (punto 2) menos lo que realmente sucedid (punto 1).
Entonces, para este analisis resulta que
Arri= (v —¢) Xe —[(v - vr) X1 + P (v —C)]
Reordenando
Arri= (Vi —¢) X1 + P (vr —¢)

Se observa que cuando X1 = d, el Arr es maximo, luego
Arfimax=(v—c)d —[(v—v)d + P (vv—c)]

Primer caso
Si X = P, mayor demanda que lo que se produjo, resulta el siguiente analisis
Si se supone X2 > Py se grafica como en el caso anterior

B

¥ / P unidades

d "z D

Donde el punto 3, es
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B=(v—c) Xz
Y el punto 4, es
B=(v—c+cCs) P—cCs X2 Ecuacion 2

Aplicando Savage y observando que el arrepentimiento es maximo cuando X»—> D, se puede
escribir
Ay max=(V—c)D— [v—cC+cCs) P—csD]

El modelo plantea que es posible arrepentirse por defecto (Arrz) o por exceso (Arrz). La solucion
Optima aparece en el punto que iguala ambos arrepentimientos, dado que el arrepentimiento
relativo es cero.
Arry max = Arr, max
luego
(v—c)d—[v-v)d+P(v-c)]=(v—c)D—[(v—c+cs)P—csD]

Reagrupando resulta
v—c)d—(VvV—v)d—(v—c)D+csD=(vy—C)P—(v—cC+cCs)P

Donde
[(wv=—c)—(w—-vr)].d+[cs—(v—c)].D

b= (vr—c)—(v—c+cs)

Finalmente, P dptimo con criterio de Savage, resulta

P_(vr—c).d+(cs—v+c).D
B vr—v+cs

(Ecuacion 3)

Aplicacion practica

Seguimos con el mismo caso de un producto perecedero que tiene un periodo de vida util y fecha
de vencimiento. Como es nuevo en el mercado, hay antecedentes o cualquier otra informacion
acerca de la demanda que tendra, tampoco es posible establecer un andlisis subjetivo acerca de
la naturaleza aleatoria de la demanda.

El precio de venta unitario (v) es 150 $/un y el costo total unitario (c) es de 70 $/un. El producto
NO vendido se destina a un mercado secundario con un valor residual (v;) de 20 $/un. También se
decide penalizar la demanda insatisfecha con un costo de escasez (cs) de 10 $/un.

Dada la naturaleza del problema se pide determinar el lote optimo de produccién que satisface
la decision optima de acuerdo con el criterio de Savage, bajo condiciones de incertidumbre, y con
la variable demanda del producto que es aleatoria discreta, y estd comprendida entre un minimo
de 100 un y maximo de 800 unidades para ese mercado especifico.

Entonces
v =150 $/un ¢=70%/un
v; = 20 $/un cs =10 $/un
d =100 un D =800 un
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(wvr—=c¢):d+(cs—v+c)'D

P =
Vr — v —CS
P_(20—70)><100+(1O—150+70)x800
B 20 — 150 — 10
_—61000_435
~ 140 0w

Lote 6ptimo de produccion = 435 Unidades

Esta es una herramienta que permite rpidamente determinar en un escenario de incertidumbre
un valor optimo segun el criterio de Savage.

Uso de hoja de calculo

La manera de incentivar al estudiante para utilizar esta herramienta que resulté apta consiste en
realizar estos procedimientos:
a) Utilizar una hoja de calculo (en este caso Excel) para implementar una matriz de
arrepentimientos, necesariamente limitada en tamafio, la que llamaremos “matriz fisica”
b) Calcular el nivel de produccion P sin limitaciones de tamafio empleando la Ecuacion 3
c) Generar en un libro (en este caso de Excel) una macro en Visual Basic for Aplications
(VBA) que sea capaz de resolver matrices cuadradas de hasta 10000 filas.

Los resultados de ambos métodos pueden ser contrastados con la propuesta algebraica
presentada mas arriba.

Construccioén de una matriz fisica

En este caso se procede a construir una matriz de ejemplo de 5 x 5 siendo la superior de

A B C D E F G H I J K L M N

1 demanda Xj

2 VECHVR — VECaCS Produce Pi 1 2 3 4 5

3 Valor de venta \" 20 1 5 - -13 -22|  -31
Borrador

4 Walor residual VR 10 2 1] 10 1 -8 -17|

5 Costo] € 15 3 s 5| 15] & -3

3 Costo escasez C5 9 Calcular 4 10 10 20 11

7 Demanda minima| d —>Xj 1 5 15 -5 5 15 25|

2 Demanda Maxima| D--=Pi 5

9

10 MaxB(j)==> 5 10 15 20 325

1

12 |MAXIMOS BENEFICIOS PORFILA. P{ijmax [ 25 | i 5 |(Producc) 1 of 14 28] 42| 4

13 2 5 14| 28] 49

14 3 10 5 of 14 28

15 |minimo arrerentiviento  Arr(iymin [NECEN - (Producc) a 15 10] s of 14

16 |(por software) 5 20 15 10 5 0

17 |CALCULO TEORICO CON CS I (produce)

18 44,625

19| CALCULO TEORICO SIN CS [ 2 Jiproduct)

20| 4,00

21 |CALCULO DIRECTO MATRICIAL [

22
23
24
25
26
27
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ellas la matriz basica de beneficios calculada a partir de una diagonal que representa los valores
X < P que estaran en la diagonal y en las celdas por debajo de ella (fig 2) y los valores X > P en
las celdas por encima de la diagonal (fig 2). Estos valores son calculados segun la ecuacion 1,

para el primer caso

B=(v—wv)X+(vi—cC)P

y con la ecuacion 2, en el segundo

=(V-VR)*$JS2+VR-COSTO)*I3

Producc Pi

Figura 1

1

2
3
4
5

B:(V—C+CS)P_CSX2

J K L M N
demanda Xj
1 2 3 4 5
5 4| -13| -22| -31
0 10 1 -8 -17
-5 5| 15 6 -3
-10 0 10 20 11
-15 -5 5 15 25

=(V-COSTO)*$1$3-CS*(K$2-3133)

Lo que sigue, es un vector MaxB(i,j) que se utiliza para mostrar los maximos beneficios de la

matriz anterior calculando el maximo en cada demanda, segun se ve en la figura 3.

Luego, (Figura 4) se construye la matriz de arrepentimientos, restando en cada celda al maximo

beneficio correspondiente a esa demanda el beneficio real dado por la produccidn realizada.

Producc Pi

1

LN B b

>

MaxB(j)==> ||:J3:J?:|‘

Figura 3

v =MAX(J3:)7)
] K LM ]
demanda Xj
1 2 3 4 5
5 a4l -1z -2z -;n
0 10 1 -8 -17
-5 5 15 6 -3
-10 0 10 20| 11
5| s s| 15| 25
10 15 20 25

| J K L M N
demanda Xj

ducc Pi 1 2 3 = 5
1 5 -4 -13 -22 -31
2 0 10 1 -8 -17
3 -5 5 15 6 -3
4 -10 0 10 20 11
5 -15 -5 5 15 25
Figura 2

FOMSREPDEEL T Fuskrae w AN

n3 = = =Arsi0-a

F) [ Ik [ b | M| N| D |

1 demanda Xj

2 Produce Pi 1 Fi ] a ]

1] 1 s| -] -13] -m| -m

4 2 o 0] 1| - w3

sl 3 I I T Y

6 a [l ol wmf a n

T 5 -15 -5 5 L] L

‘ 4

Ll

10 Maghij)j=== 5 ] 15 2 25

nj R

12 1 of wa] 28] a3 s

13 2 s| o] aal 2] a2

| 3 w| s of x4 28

15 ] 4 1] aof 5[ o aa

1| 5 20 a5 w| 5[ o

7]

Figura 4
maximos

Los Ultimos pasos consistiran en construir un vector columna para sefialar los
arrepentimientos en cada nivel de produccion elegido, mediante la funcion
=MAX(fila-de-matriz-de-arrepentimiento)

consignando el valor de cada P a la derecha del vector. (Figura 5)
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Con ello se podra calcular el minimo de esos maximos y la produccion a la que corresponde,
mediante las funciones

=MIN(vector-de-maximos-arrepentimientos)
=MIN(Q12:Q17) (Figura 6)

T e e

12 il x v & aaxpa

2 g : x Q1o . Lo | aaNQI2Q17)
4 1 | x|t |im|N|ofriiFaTT r |
1] _demanda Xj | MaxBfi) | | 4 N | O P Q R s
2 il 2l 3 4 s | | 3 1 MaxB(i)
3 s| 4 - -2 m | 5 2 s x2 X
4 o 10 1 -8 -17 | 10 3| -3 5 10
s{ | s| 5] e -3 | 15 4| -1 10 20
6] -100 o 10 20 n | 2 s| 3 15 0
7] as|] 5| 5| ] 3 | > 6 11 2 a0
8| | | | 7| 2 2 50
;[T I T T [ | |Minimo Arr|Produce. | ] 60
0] S W 1 220 25 15) 9 |Minimo Asr| Producc. o
1 w| 25 15| 80
12 of 1] 28 42 se 561 " 90
13 s| o 1 28 @ 22 12 sl 56(1
| 10| 5| o 14 28 2803 13 4 2|2
15| 15| w0 si o 14 15la 4] 2 283 1005
6] 20/ 15| 1] s| o 20is 15 14 154
1) 1 6 o 20[s =
18 17 “

Figura 5 Figura 6

=BUSCARV/(valor-minimo-hallado [en] vector-de-maximos-arrepentimientos-y-columna-a-la-
derecha [y escribir] la segunda columna)
=BUSCARV(Q10;Q12:R17;2;FALSO) (Figura 7)

GHAPAPRIES i rueme suneacic
‘ R10 - | i ‘ X K H =BUSCARV{Q10;Q12:R17;2;FALSO)

4 N[ o P Q R s T L
1 MaxB(i) caso 1
2 5 X2 x1 produt
3] a1 5 10 10

4| 17 10 20 20

5 -3 15 0 30

6 1 20 40 a0

7 25 25 50 50

8 60 60

9 Minimo Arr|Producc. 70 70

10| 25 15| I 80 80

1 %0 90

12] 56 561

13| a2 422

1] 28 283 T

15| 1a 15]4

16 [ 20(5 800

17 600

18 |

19 | e

Figura 7

Calculo teodrico utilizando la ecuacion 3

Para implementar este parte simplemente habilitamos un sector de la hoja con este célculo,
usando el costo de escasez, arriba y sin usarlo, abajo. (Figura 8)

F17 - £ | ={(VR-COSTO)*demin+{CS-V+COSTO)*DeMax)/{VR-V-CS)
A C D E F G H

13

14

15 |MINIMO ARREPENTIMIENTO  Arr(i)min {Producc)

16
17
18
19
20

{por software)

CALCULO TEORICO 5IMN C5

CALCULO TEORICO COM C5

{Praducc)

19,9966672

[sorJieroduce

Figura 8
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La razén de este doble calculo se explica en las Conclusiones, mas adelante.

Generacion de un programa (macro) en VBA capaz de resolver
matrices de hasta 10000 columnas.

El Ultimo paso sera construir un programa en VBA que permita construir matrices cuadradas de
hasta 10000 columnas. (se puede solicitar el cddigo en optimiza.org)

Como complemento se agregaron, en la misma hoja de cdlculo utilizada para resolver la matriz
anterior dos “botones” destinados a correr el programa y a borrar los datos ingresados,
respectivamente. El detalle de la parte de hoja destinada a la macro es el que se ve en la figura

siguiente

4 A B C D E F G H J k|t m] N«
1 demanda Xj

2 VACRVR — VCCS, producc Pi 1l 2 8 a4

el Valor de venta v 20 | 1 5 -4 13| -22 -;

Borrador —

4 Valor residual VR 10 | 2 0 10 1 -8 17
5 Costo] ¢ 15 | \ 3 5| s | 6 3]
6 Costo escasez cs . Calcular I 4 -10 0 10| 20 1
7 Demanda minima| d—>Xj 1 L — 5 EE 5| 15

8 Demanda Méaxima| D—>Pi 5

9

10 MaxB()=> | 5 10| 15| 20 35

1 _

12 |MAXIMOS BENEFICIOS POR FILA| P(ijmax [IINZSINN  i-[IRNNSI| (Producc) 1 of 1] 28] az] s8]
13 [ | || | 2 s| o 14 28] 4o
14 | \ ] \ 3 10| 5| o 1] 2
15 |minimo arrepenTIMIENTO | Arr(imin SN - IR (Produc) 4 15| 0] 5[ o 1a
16 |{por software) | | 5 20 15 10| 5 [4]

17 |CALCULO TEORICO CON €S I (produco)

18 [ 44,625

19 |CALCULO TEORICO SIN CS 2 |(Produc)

T I

20 \ | | X I I R

21 |CALCULO DIRECTO MATRICIAL = [ | [

22

23
24
25
26
27 | | |

Como se ve, hay un sector de carga de datos (tabla superior izquierda) y renglones con resultados
y comparaciones con el método matricial (si es posible por el tamafio de la matriz). La matriz
inferior derecha (en verde) esta construida con la macro y sirve para comparar el funcionamiento
con la matriz calculada en la primera parte de este articulo..

Resultados y conclusiones

Los resultados del trabajo son satisfactorios. Se dispone de una herramienta capaz de resolver
con seguridad casos en los cuales el software disponible no logra resultados. Se han encontrado
algunas fallas menores en el calculo de casos con costo de escasez, donde hay divergencia de
resultados probablemente originadas en un cdlculo algebraico redundante y que esta siendo
analizado.

Este desarrollo servira para:
e incorporar una mas a las herramientas ya construidas por el equipo en hoja de calculo
(inventarios multimodal, prondstico de rentabilidad bajo incertidumbre, gestion de
proyectos PERT-CPM, y otras).
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e afianzar la ensefianza avanzada de manejo de hojas de calculo y programacion en los
estudiantes de ingenieria como herramienta profesional de aplicacion directa

e posibilidades didacticas mayores al poder mostrar en exposiciones tedricas como se
resuelven los casos complejos planteados.

Para quienes estén interesados ofrecemos, ademas del cddigo en lenguaje VBA de la macro
utilizada, el libro utilizado. Se puede solicitar utilizando los medios de contacto que figuran en
www.optimiza.org
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En esta Seccion queremos presentarte,
a manera de recreo, algunos desafios
matematicos simples para pensar,
aprender y divertimos un rato.

Desafios

Desafio 1 — ¢ Demostracion brillante o trampa oculta?

En una charla entre colegas aparece la siguiente “demostracion” sorprendente:
Supongamos que a y b son ndmeros reales no nulos tales que a = b.

1. a=b»b

2. a’=ab

3. a?—b%?=ab-b?

4, (a—b)(a+b) =b(a—Db)

5. Simplificando el factor comun (a — b) en ambos lados:

a+b=>b

o

Como a = b, entonces:

b+b=b=>2b=b>2=1.
Conclusion: jhemos demostrado que 2 = 1!

¢En qué paso esta el error? ¢ Por qué la “demostracion” no es valida?
Esperamos comentarios.

Desafio 2 — El test de calidad engafnoso

Una planta fabrica piezas, y se sabe que aproximadamente el 1 % de las piezas producidas es
defectuosa.

Se dispone de una prueba de control de calidad que tiene las siguientes caracteristicas:

o Silapieza es defectuosa, el test la detecta como defectuosa el 98 % de las veces.
(Sensibilidad = 98 %)

e Silapieza es buena, el test la indica incorrectamente como defectuosa el 5 % de las
veces.
(Falsos positivos = 5 %, es decir, especificidad = 95 %)
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Se toma una pieza al azar de la produccion y el test indica: “defectuosa”.

1. ¢Cudl es la probabilidad de que la pieza esté realmente defectuosa dado que el test
sali6 positivo?

2. ¢ Por qué esa probabilidad puede ser mucho menor de lo que la intuicion sugiere?
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